
I

J

j ,'._/-i/j_5 o yj A_"

Advanced Software Development
Works ta tio n Proje c t

Engineering Scripting Language
Graphical Editor

SUMMA R Y REP 0 R T '

T=: = =

Inference Corporation

2/14192

(NASA-CR-190391) AOVANCED SOFTWARE
DEVELOPMENT WORKSTATION PROJECT: ENGINEERING

SCRIPTING LANGUAGE. GRAPHICAL EDITOR

(Research Inst. for Computing and
Information Systems) 43 p

N92-26183

Unclas
G3161 0096751

u

Cooperative Agreement NCC 9-16
Research Activity No. SE.41

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division'

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

TECHNICAL REPORT

.,i

J

The RICIS Concept
7

I

d

The University of Houston-Clear Lake established the Research Institute for __S

Computing and Information Systems {RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC} and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated _

program of research in advanced data processing technology needed for JSC's _

maln missions, including administrative, engineering and science responsl-

bilttles. JSC agreed and entered lnto a continuing cooperative agreement

with UHCL beginning in May 1986, to jointly plan and execute such research _.

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
compuOaag and educational facilities are shared by the two institutions to

conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research -_

and professional level education tn computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UItCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual Interest _

to its sponsors and researchers. Within UIICL, the mission is being
implemented through interdisciplinary involvemcnt of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences. : _-

RIC!S also collaborates with Industry in a companion program. This program : -

is focused on serving the research and advanced development needs of m

Industry.

Moreover, UHCL established relationships with other universities and re- =

search organizations, having common research interests, to provide addi- _

tionai sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research _

organizations are involved vla the "gateway" concept Jql

A major role of RIC1S then is to find the best match of sponsors, researchers

and research objectives to advance knowledge In the computing and informa-

tion sciences. RICIS, worklngJotntly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and Industry.

BM1

Advanced Software Development
Works ta tio n Proje c t

Engineering Scripting Language
Graphical Editor

SUMMA R Y REPOR T

w

z

w

!

L2

In

NI

_n

_U

M

I

m

m

m

u

m

m

I

m

RICIS Preface

w

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Anthony

Lekkos, Associate Professor, Computer and Information Sciences, served as RICIS

research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Robert Savely of the Information Technology

Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

w

m

w

w

m

1

m

m
m

I

i

J

Ii

J

ml
I

m

!

m

m
m

_r

J

iil

w

!
I
wl

m

w

B

w

W

i

z

m _

I

ASDW PHASE IV SUMMARY REPORT

Y

i

L

n

=

p

w

w

Table =of :Contents

1. Introduction

1.1 Motivation

1.2 Project Background

1.3 Status

2. Engineering Scripting Language

2.1 Overview

2.2 Graph Objects

2.3 Graph Validation

2.3.1 Graph Semantics

3. User Interface

3.1 The ESL Editor Panel

3.2 The ESL Editor Control Panel

3.3 The Node Details Panel

3.4 Component Details Panel

3.5 Graph Port Details Panel

3.6 The Connector Details Panels

3.7 Node to Node Connector Details Panel

3.8 Constants to Node Connector Details Panel

3.9 Graph Input Ports to Node Connector Details Panel

4. ESL System Architecture

4.1 Use of ART-IM objects

4.2 Use of InterViews and TAE+

5. KE Provided Objects

5.1 PRIMITIVE-SUBPROGRAM Objects

5.2 PRIMITIVE-SUBPROGRAM-PORT Objects

5.3 DATA-TYPE Objects

5.4 IMPLEMENTATION Objects

6. Future Directions

6.1 Enhancements to the ESL System

6.2 Developing Reusable Software Libraries

7. Conclusions

Appendix A Graph Validation Algorithm

PAGE I

1

1

1

2

3

3

3

4

5

7

7

10

12

14

16

17

17

20

22

24

24

24

25

25

26

27

27

30

3O

31

32

33

ASDW PHASE IV SUMMARY REPORT

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

List of Figures

ESL Editor Panel

ESL Editor Control Panel

Node Details Panel

Component Details Panel

Graph Ports Details Panel

Node to Node Connector Details Panel

Node to Graph Output Ports Connector Details Panel

8

11

13

14

16

18

22

I

m

m

km

m

S

m

i

m

r
m

m

m

w--

W

PAGE II

m

m

-.. ASDW PHASE IV SUMMARY REPORT

1. Introduction

w

!

E
i

V
_t

m

w

|

B

w

w

1.1 Motivation

Software development is widely considered to be a bottleneck in the development of

complex systems, both in terms of development and in terms of maintenance of

deployed systems. Cost of software development and maintenance can also be very

high. One approach to reducing costs and relieving this bottleneck is increasing the

reuse of software designs and software components. A method for achieving such reuse

is a software parts composition system. Such a system consists of a language for

modeling software parts and their interfaces, a catalog of existing parts, an editor for

combining parts, and a code generator that takes a specification and generates code for

that application in the target language. The Advanced Software Development

Workstation is intended to be an expert system shell designed to provide the capabilities

of a software parts composition system.

1.2 Project Background

The first phase of the Automated Software Development Workstation Project began in

the fall of 1985 and work has continued to the present. The first phase demonstrated in

a limited domain (Space Station momentum management) the feasibility of a

knowledge-based approach to the development of a software compc>nents composition

system. The second phase, which began in April, 1987, focused on ways to exploit

knowledge representation, retrieval, and acquisition techniques to reduce the amount of

effort required to build such systems. The third phase focused on enhancement of the

prototype system developed in Phase II and addressed issues of scale-up and integration

with present or future NASA software development environments. For Phase III work,

emphasis has been on technology transfer to groups within NASA Johnson Space Center

(JSC) and the NASA community and the use of the ASDW prototype in actual software

configuration activities. In addition, work was been done on the generalization of the

ASDW framework to support use of the system as a generic design knowledge

acquisition system. ACCESS is the name of the prototype software for the ASD\V. It

is a knowledge-based software information system designed to assist the user in

modifying or configuring retrieved software or design objects to satisfy user

specifications.

Phase IV of this project consisted of two parts. The first effort was directed to

providing additional enhancements to the ACCESS user interface, as requested by

NASA JSC, based on feedback from the target community of users in Mission

Operations.

r

!

The second, and more significant, effort consisted of extending the ACCESS framework

to include a graphical user interface to support the specification of application modules

PAGE 1

ASDWPHASEIVSUMMARYREPORT

using the Engineering Scripting Language (ESL) developed by SofTech. This editor
allows end-usersof the ACCESS system to add to the library of application components
without the need for a knowledge engineer as an intermediary, thus removing a
significant roadblock to the wider adoption of the ACCESS technology within the target
user community.

1.3 Status

m

i

m®
The basis for the representing knowledge in ACCESS is ART-IM-, a toolkit for the

development of knowledge-based expert systems. The ART-IM schema system is used

as the mechanism for representing objects within ACCESS. ART-IM rules are used to

propagate constraints within the object system and to test for constraint violations.

The user interacts with ACCESS via a graphical, point and click interface. This

interface has been developed using the facilities of TAE Plus (Transportable

Applications Environment Plus), which provides capabilities for developing interfaces on

top of the X Window System. The user interface to ACCESS is designed to hide the

details of the ART-IM language from the end user. Standard panels are provided for the

user to browse and modify objects in the knowledge base. In addit]on, the knowledge

engineer who develops a knowledge base to use with ACCESS can also use TAE Plus

develop custom forms for browsing or modification.

The graphical interface which supports ESL was developed using InterViews and

Unidraw. InterViews is a graphical user interface toolkit, developed at Stanford

University and available in the public domain. Unidraw is a library built on top of

InterViews which defines basic abstractions for building graphical editors.

The current prototype runs on Sun hardware, but as the source languages for ART-IM,

TAE Plus, Interviews, Unidraw and ACCESS are C++ and C, ACCESS is readily

portable to a wide variety of platforms.

PAGE 2

z

ASDW PHASE IV SUMMARY REPORT

2. Engineering Scripting Language

w

v

w

T

mL
J

E

w

L

W

2.1 Overview

As part of an earlier study done for UHCL/RICIS, Softech partially specified a

graphical language for building applications software an Engineering Scripting

Language (ESL). As described in the Summary Report on this project [Softech g0],

"the purpose of an ESL is to allow the application engineer to limit his view of the

problem space to those functional concepts that are inherent in the problem space and

not in the software design."

The ESL described in this report is a graphical language for representing applications.

As originally envisioned by Softech, each graph consists of nodes, which may be

separate Ada tasks, and queues, which represent the flow of data from one node to

another. Graphs formed in this way can then be treated as components for other

graphs - such a graph is called a subgraph.

For the initial ESL editor prototype, a subset of the functionality described in the

Summary Report was implemented. In this prototype, the node primitives represent

Ada procedures or functions. In general, a connection between two nodes represents a

single data item being passed from one node to another, rather than a queue of data

objects. There are no explicit Merge or Replicator nodes - this functionality is supplied

implicitly by allowing multiple connectors to or from a single data port. The prototype

supports IF nodes and ITERATOR nodes, which translate to Ada IF and LOOP

constructs. The ESL as implemented is described in more detail in the following

sections.

2.2 Graph Objects

The ESL Editor supports the graphical construction of Ada programs through the use of

SUBPROGRAM objects. A SUBPROGRAM object represents an Ada procedure and

function. Such an object can be either a PRIMITPv_E-SUBPROGRAM object provided

by a knowledge engineer (K_E-provided) or a GRAPH object built up from these

primitive objects.

GRAPH objects are represented visually as a collection of nodes (boxes) connected by

connectors (lines) with special boxes representing graph inputs and graph outputs. Each

node in a graph is associated with either a PRIMITI_ZE-SUBPROGRAM object, another

GRAPH object, or an Ada IF or LOOP construct. The connections from one node to

another node represent data or control being passed. Nodes may be connected on either

side; connections on the right side are input connections to the node, and connections

on the left side are output connections from the node.

PAGE 3

ASDWPHASEIV SUMMARYREPORT J

Additionally, the graph itself can have inputs and outputs, and the ESL graph must w
contain boxes representing graph inputs and graph outputs. The box or pseudo-node
representing graph inputs only allows outgoing connections. Similarly, the box for the

graph outputs only supports incoming connections, m

Each SUBPROGRAM object hss INPUT-PORTS and OUTPUT-PORTS. An input

port corresponds to an Ada IN (or IN OUT) parameter; an output port corresponds to

an Ada OUT (or IN OUT) parameter or a return value from an Ada function. Visually,

the ports on a node are represented by two small rectangular areas on the]eft (for input :_

ports) or right (for output ports) sides of the box representing the node.

Conceptually, between any two nodes, there can be a group of connectors - each

connector representing a single data item or execution "trigger" passed from an output

port of the first node to an input port of the second node. To support the concept of a

trigger connection, each node is considered to have an implicit input port and an

implicit output port of type trigger - named READY and DONE.

2.3 Graph Validation

One of the most significant technical challenges in this project was to clarify the

concept of a "valid" graph - that is to develop a method for determining whether a

graph constructed using the ESL Editor is syntactically correct. It was decided that in

order for a graph to be valid, the following two conditions must hold:

• First, it must be possible to interpret the graph in such a way that a

syntactically correct Ada program can be generated from the graph.

Second, the graph must be constructed in such a way once the code is

generated, data is computed for all graph output ports regardless of the

execution path followed. This means, in the simplest case, that if a value

which is a graph output is computed by following the THEN branch of an

IF node, then it must also be computed when following the ELSE branch of

that IF node.

$!

m
r

J

m

In addition, certain limitations have been placed on the types of graphs which could be

constructed based on feasibility of implementing an effective validation algorithm.

It is important to realize that the validation algorithm as developed cannot "prove"

that a program generated from a valid graph is correct in the sense of producing

meaningfuI results. For example, without additional restrictions, there is no way of

checking that loops are exited, that is, that the boolean test at the end of a loop wiJl at

some point return FALSE.

PAGE 4

i

w

m

U

m
W

w

u

g

!

i

i

_ ASDW PHASE IV SUqvIMARY REPORT

w

L

w

m

r"

_m
"m"

V

E

2.3.1 Graph Semantics

This section describes various clarifications and interpretations made of graph

semantics. A primary motivation for many of these interpretations is the goal of

producing readable code from the graph.

Note that an ESL graph has an interpretation as a directed graph in which the nodes

are vertices and the connectors between nodes are edges. This interpretation will be

referred to in what follows.

, If a node output port is not connected to an input port, then the output

from that node simply isn't used. It is not necessary to explicitly force a

connection to NULL.

. It is possible to have multiple connectors with the same input port as

destination - this amounts to an implied merge. Because of this

interpretation, explicit merge nodes are not required and are supported in

the initial ESL editor implementation.

. It is possible to have multiple connectors with the same output port as

source this amounts to an implied replicator. Because of this

interpretation, explicit replicator nodes are not required and are not be

supported in the initial ESL implementation.

. A special node type, the ITERATE node, will be used to support looping.

The ITERATE node has two input ports of boolean type , the INITIAL port

and the LOOP port. It has two output ports of trigger type, the

CONTINUE port and the EXIT port. The INITIAL port of the ITERATE

node must be connected to a port outside the loop; there must be a

connection to the CONTINUE port from within the scope of the loop.

The code which is generated for an ITERATOR node is as follows:

while (<boolean-v_rlable>) loop

end loop ;

The value <boolean-variable> isset outside the loop to the value passed by

a connector to the INITIAL port. Subsequently, its value is set within the

loop to the value passed by the connector to the LOOP port.

A node is within the scope of a loop if there is a simple graph cycle which

contains the ITERATOR node (vertex) and the connectors (edges) from the

CONTINUE port and into the LOOP port of that node.

No node can correspond to code which is executed more than once except

nodes within the scope of a loop. In other words, an IF or SELECT node

cannot be used to support looping.

PAGE 5

ASDW PHASE W SUMMARY REPORT

5. If an output port from one node is connected to the input port on another

node, then it is possible that data will be available at the input port more

than once before the second node is "ready" to be executed. This occurs

when a value is computed multiple times within a loop, but used only after

exiting from the loop. The interpretation in this case will be that the most

recent value available at the port will be the value which will be used.
::r

6. If a node is executed more than once (e.g., is within the scope of a loop),

then it is possible that a value will be available at an input port the first

time the node is executed and that no new input will be available at this

node subsequently. To support this type of situation, the interpretation will

be that a node input is not "consumed" until another input replaces it.

The graph validation algorithm is describe in more detail in Appendix A.

11

m

u

-E.1

,qr

z

w ¸

W

i

V

m

m

J

m

PAGE 6 l

l

_.. ASDW PHASE IV SUMMARY REPORT

3. User Interface

=

The user creates and opens ESL Graph objects using the OPEN button on the ACCESS

Tools Panel; to create a new ESL Graph, one selects GRAPH in the object taxonomy

and then uses the OPEN button to create a new instance. Because the graph name is

the nam. e used for the Ada subprogram generated, the new object name must be a legal

Ada identifier. Ada identifiers begin with a letter and then are followed by an arbitrary

number of letters, numbers, and underscores.

When an ESL Graph object is opened the ESL Editor

Panels are displayed. The ESL Editor Panel shows

contains the tools used to create, move, and connect the

Control Panel has a list of the nodes on thegraph and

the commands that change, and save the graph being

change detailed information about nodes or connectors,

the Ada program corresponding to the graph. The ESL

3-1 and the ESL Control Panel is shown in Figure 3-2.

Panel and ESL Editor Control

the image for the graph and

graph's nodes. The ESL Editor

status information and contains

viewed, commands to delete or

and commands used to generate

Editor Panel is shown in Figure

L

r-

3.1 The ESL Editor Panel

The ESL Editor Panel is the primary editing panel for ESL Graphs. The panel is

broken up into several parts. The top portion of the panel contains the magnification

level and the name of the drawing file associated with the graph. Below the status line

on the left are the Tools Palette and the panner. Below the status line on the right is

"the ESL Workspace where the graph is shown.

In the ESL Workspace, the nodes on the graph are shown as boxes with terminals on

the left and right sides to which connections can be made. Connections on the graph

are shown as lines emanating from the right side of one node, connecting to the left of

another. Additionally there are three types of special "pseudo-node" for the graph's

input ports, output ports, and for constant sources. Because the graph input ports and

constant values can only be sources of connections, the corresponding pseudo-nodes only

have a right side terminal, and similarly, the graph output ports pseudo-node only has a

left side terminal.

To the left of the drawing workspace is a palette of tools, one of which is always

selected. Clicking the first mouse button in the Graph Workspace wields the currently

selected tool at the mouse location. To switch to another tool, one moves the mouse

over that tool and clicks the first mouse button. As a short cut, one can click on the

middle mouse button to wield the Move Tool or click on the third mouse button to

wield the Select Tool. The system's response to wielding a tool depends on the type of

tool wielded and the location of the mouse when the tool is wielded.

PAGE 7

ASDW PHASE IV SUMMARY REPORT

Figure 3-1: ESL Editor Panel w

...]5.....

_ six_dof_ddver.dwg mag lx

----0_ None

Move m

Q
N

ITER

IP

c
oe

f ,

'!i!iiiiiii!iiiiiii!!iiiiiiii!iii!!iii!!iii!iiiiiii!iiiiii
:.:.:.:.......:.:.:.:...:.:.,........:.:.:.:.:.:.:.:.:
:::::::$!.................. i::::::::::::i
ii:!:!:i:!: _i:i:!:i!!!i!i
:iiiiii!!ii ii!!ii!i:i:i:,

:.:,:.:.:.: .:.:.:.:.:.:_

:::iii iiiiiii?iii!it
i

:::::::::::::::::::::::::::::::::::::l::::::::::::::::::
::
::

_...__J

o o Q cs,f
T

Get Exec Z Get End OfR_-_ 1

T

Compute Num of DEs
Get Exec 3

ERATI

let Num DEs inner loop Get Input Get Exe_

PAGE 8 m

i

v

ASDW PHASE IV SUMMARY REPORT

_qa

Select. The topmost tool on the Tools Palette is the Select Tool. When this

tool is wielded and the mouse is over a node or connector, that object is

selected. That object is then the one affected by commands on the Edit

Menu on the ESL Editor Control Panel. (The ESL Editor Control Panel is
discussed in Section 3.2.

w

L

mlF

Move. Below the Select Tool is the Move Tool. Nodes may be moved by

wielding this tool over the node and moving the mouse while keeping the
first mouse button selected.

Subprogram Node Creator. Below the Move Tool is the Subprogram

Node Creator Tool. If the currently selected object on the Tools Panel is a

Subprogram object, then when this tool is wielded, a node corresponding to

that Subprogram is created at the mouse position. Using this tool, the user

may create either a Primitive Subprogram Node that represents some KE-

provided primitive subprogram, or a Subgraph Node that represents a KE-

created or a user-created ESL Graph.

After the node is created, a Node Details Panel corresponding to the new

node is displayed. The Node Details Panel is discussed in Section 3.3.

If Node Creator and Iterator Node Creator. These two tools are used

to create IF Nodes and ITERATOR Nodes respectively. If Nodes correspond

to Ada IF statements and Iterator Nodes correspond to Ada LOOP

statements. The use of these nodes and the ESL Graph language was

discussed in chapter 2. After creating the new node, a Node Details Panel is

displayed for the new node.

v

Graph Input Ports Creator, Constant Source Creator, and Graph

Output Ports Creator. These tools make the "pseudo-nodes" that stand

for the graph's input ports, for constant sources, and for the graph's output

ports respectively. A graph can have at most one of each type of these

pseudo-nodes; to be valid, a graph must have the Graph Input Ports and

Graph Output Ports pseudo-nodes.

As discussed earlier, connections can only be made from the Graph Input

Ports and the Constant Source pseudo-nodes, and likewise, connections can

only be made to the Graph Output Ports pseudo-node.

Connection Tool. Below the node creation tools on the Tools Palette is the

Connection Tool. This is used to create the connections between the nodes.

To create a connection, the user clicks the first mouse button when the

mouse is on the terminal that is to be the source of the connection. A

connecting line will follow the mouse movement, but only horizontally and

T

w==

PAGE 9

ASDW PHASE IV SUMMARY REPORT

vertically. One can effect a 90 degree turn in the connection by clicking on

the first mouse button. To terminate the connection, one click with the

second mouse button when the the mouse is over the destination terminal.

After the connector has been made, a Connector Details Panel is displayed

for the new connector. With this panel the user may specify which ports

that are to be connected between the two nodes. The Connector Details

Panel is discussed in Section 3.7.

Below the tools is a "panner" that allows the user to shift the graph workspace view.

The four direction arrows shift the workspace up, down, left, and right, and the in and

out arrows cause the view to zoom in and out. Below the arrows is a part of the panner

that represents the ESL Workspace. The view may be shifted up, down, left, or right

by dragging the solid white portion, or by clicking in the grey area.

The ESL Editor Panel cannot be resized.

3.2 The ESL Editor Control Panel

The ESL Editor Control Panel contains three menus - the View Menu, the Edit Menu,

and the Translate Menu. Below the menus are fields indicating the graph being edited,

the root graph (the graph that was first opened), and the parent graph of the current

graph. Below these fields is a field that indicates the object currently selected on the

ESL Workspace. It is this object that the functions on the Edit Menu operate on.

Beside these fields is a field containing a list of the nodes on the graph. Selecting an

item on this list selects the corresponding node in the ESL Workspace and vice-versa.

• View. The View Menu contains commands th.at affect the graph being

viewed. The commands on this menu are Delete, Save, Parent Graph,

Subgraph, and Close.

Delete deletes the graph currently being edited. Once a graph is used in

another graph, it cannot be deleted. Graphs must be deleted from this

menu. The Delete command in the Object Menu on the Tools Panel does not

work on Graph objects.

The Save command saves changes made to the current graph. If the current

graph is modified, the graph must be either saved or deleted before the ESL

Editor may be closed or another graph opened.

If the object currently selected in the ESL Editor Panel is a Subgraph node,

then the Subgraph function makes the ESL Editor Panels show that child

graph. The root graph stays the same, but the parent graph is the graph

that was previously being viewed. The Parent Graph function switches the

view back to the parent graph.

i

W

m

w

m

W

m
g

I

B

m

i

J

D

W

w

w

m

PAGE 1o

.,._ ASDW PHASE IV SUMMARY REPORT

= =

w- ;et Exec

r

w

ES L Editor Control

Current gr_:dl

Parent gral_

Root

: six_dof_driYer

: <none)

:six_dof_dri_r

Tool Panel object:Not f_ctiomal,.,

Object selected
Cmmector source

Cormector destinati_ :

Get Exec

Nodes o_ 6raph

oraph inputs
Set ptr to rec

inner loop
8et Exec 1

Set Nun DEs

Get Exec 3

ITERATE

Cmlpute N_ of DEs

8et Exec 2

Set Evts

6et End 0f Bun i

Z

aj

V

!
m
m

mm
_mm

mr

z

m

m

Figure 3-2: ESL Editor Control Panel

The Close command dismisses both the ESL Editor Panel and the ESL

Editor Control Panel. If the graph has been modified, it must be either

saved or deleted before the ESL Panels may be closed.

• Edit. The Edit Menu contains commands that change or display

information about the object Current|yselected in the ESL Workspace. It

contains two commands, Delete and: ()bject Details...

Delete deletes the node or connector that is selected on the ESL Workspace.

When a node is deleted, all connectors to that node are also deleted.

Object Details... displays a panel giving detailed information about the

selected object. If a node is selected, then a Node Details Panel for that

node is displayed. If a connector iS selected, then a Connector Details Panel

for that connector is disp|ayed. The Node Details Panel is discussed in

Section 3.3 and the Connector Details Panel is discussed in Section 3.7.

• Translate. The Translate Menu contains commands related to generating

the Ada code for a graph. It contains three functions - Validate Current

Graph, Validate Entire Graph, and Generate Ada. Graph validation is

discussed in Section 2.3.

PAGE I 1

ASDWPHASEIV SUMMARYREPORT air

The Validate Current Graph command validates only the graph currently

being viewed. The Validate Entire Graph command validates the current

graph and all subgraphs below it.

Generate Ada first validates the current graph and all its subgraphs, then

generates the corresponding Ada programs. If the code for the graph has

already been generated since the last modification to the graph and the

generated file still exists, then no code generation is performed. The

filename for the code generated for a graph is the graph name followed by
t! .at, o

3.3 The Node Details Panel

The Node Details Panel is used to view information about a node on a graph. From

this panel the user may also change the name of the node or pop up a Notes Panel

where notes about the node's use may be browsed or edited. The Node Details Panel is

shown in Figure 3-3. The contents of the fields on the panel and responses to events are
described below:

• Name. The Name Field is a text field which contains the node's name.

Initially a node's name is system-generated. This field is read and the node's

name is changed when the user terminates input to the field.

• Type. The Type Field identifieS the type of the node. Examples of values

displayed in this field are "Procedure," "Function," "Subgraph," and "If."

The text in this field is read only.

Input Ports and Output Ports. The Input Ports and Output Ports

Fields are texttist fields which list the input ports and output ports for the

node and the connections they are associated with. Items in these fields give

the port name, data type, and a connection status string.

The current selection of either textlist is read when the Connector Details...

Button immediately below the textlist is selected.

Connector Details... Below both the Input Ports and Output Ports textlist

fields is a Connector Details... button. When this button is selected, a

Connector Details Panel is popped up for the connector group that

corresponds to the current selection in the textlist. The Connector Details

Panels are discussed in Sections 3.7, 3.8, and 3.9.

Component Details... When the Component Details... Button is selected,

a Component Details Panel is popped up for the subprogram corresponding

to the node. The Component Details Panel is discussed in Section 3.4.

PAGE 12

W

F

J

J

m

I

U

J

J

W

m

w

m

m

W

w

I

w

B

i
m

w

_=, ASDW PHASE IV SUMMARY REPORT

l_de Details

m
w

w

E

=

h

w

m
W

:l.c"_'t:e _ o_"ns, J

Type : kpplicltian Procedure Node

On _raph: six_dof driver

Input ports :

lqLq_ : <trigger) frm ITIZATE, C_FI]_JI

[C4re_tor betails... J

OutImt ports :

_m Of Diff _[: Positi_ to Set _ n[., Nm_Diff [q

: <trier) to Get _ 3,

C_rmector Details... J

Figure 3-3: Node Details Panel

Notes... When the Notes... Button is selected, a Node Notes Panel is

popped up.

The Node Notes Panel contains fields that identify the node name and type,

a field with Component comments, a field with user-editable notes about the

node, an Ok button, and a Cancel button. When the Ok button is selected,

changes to the node's notes are made permanent and the panel is dismissed.

The Cancel button dismisses the pknel without making any changes.

Close. When the Close Button is selected, the Node Details Panel is
dismissed.

PAGE 13

ASDWPHASEIV SUMMARYREPORT

3.4 Component Details Panel

The Component Details Panel is used to display information about a program

component (procedure, function, or subgraph) which can be used as a node on another

graph. The Component Details Panel is shown in Figure 3-4. The following describes

the fields on this panel:

_mme: 0he_Step

Type: Applicati_ Proceduto

Inlmt ports :

Erv_rarme_t grate Axrgy : Envirarm_t_Model.State_Artsy--

_tjmt ports:

I_plmm_tati_

P_mQ :

$po¢ filenau:

Body fil_ame :

Si_ l)OLr_Iz_t_tiat i_I

six_do f_iv_t_tiat z_s_. •

lix_dof i_It_tiat iQm_. •

Node Lnstances :

One Step

Hod,, l_tails...]

Figure 3-4: Component Details Panel

• Name and Type. The Name and Type Fields identify the component name

and type. Component types are either Procedure, Function, or Graph. The

text in these fields is read only.

• Input Ports and Output Ports. The Input Ports and Output Ports

PAGE 14

J

g

i

I

qff

J

W

u
m

n

B

w

i

!

g

!

ASDW PHASE IV SUMMARY REPORT

L_

w

w

,m==

E

r

m
w

L

Fields list information about the component's input and output ports. Both

fields are populated with lines that show the port name, data type, and port

comments. For procedure or function components, the port comments are

supplied by a Knowledge Engineer. For Graph components, the port

comments are the same as the notes for the connector to the graph port.

The text in these fields is read only.

Implementation fields. The details about a component's implementation

are listed in four implementation fields. The text in all these fields is read

only. The fields are:

o Type. This field contains a string indicating whether implementation

type is Inline, Procedure, or Package.

o Package Name. If the Implementation Type is Package, then this

field contains the package name.

o Spec Filename. If the Implementation Type is Package, then the

filename for the Ada package spec is displayed in this field.

Body Filename. If the Implementation Type is Package or

Procedure, then the filename for the Ada package or procedure body is

displayed in this field.

For Procedure or Function Components, the implementation information is

contained in objects created by the Knowledge Engineer. For Graph

Components, the implementation information is entered by the user.

Node Instances. The Node Instances Field is a textllst field which contains

the names of all nodes which use this program component. The current
selection from this field read when the Node Details... Button is selected.

• Node Details... When the Node Details... button is selected, a Node Details

Panel is popped up with information about the node corresponding to the

currently selected item in the Node Instances textlist. The Node Details

Panel is discussed in Section 3.3

• Notes... When the Notes... Button is selected, a Component Notes Panel is

popped up.

The Components Notes Panel contains static text fields displaying the

component name and type, a non-editable field of comments about this

component, and a Close button. Selecting the Close Button dismisses the

panel.

PAGE 15

ASDW PHASE IV SUMMARY REPORT

• Close. When the Close Button is selected, the Component Details Panel is

dismissed.

3.5 Graph Port Details Panel

The Graph Port Details Panel is used to browse the set of input or output ports for a

graph. This panel is popped up after the user has selected either the icon representing

the current graph's input ports or the icon representing the current graph's output

ports and then selected the Object Details... menu item on the Edit Menu. This panel

is shown in Figure 3-5.

Figure 3-5: Graph Ports Details Panel

The fields on the Graph Port Details Panel are as follows:

• Name. The Name Field displays the graph name.

read only.

The text in this field is

• Graph Ports. The Graph Ports Field is a textlist field which lists

information about the graph ports being examined. The title of the textlist

identifies whether the panel is displaying information about the graph's

input ports or its output ports. An item in the Graph Ports textIist gives

the name of graph port, its data type, and its connection status.

The current selection from this field is read when the Connector Details...

button is selected.

• Connector Details... When the Connector Details... Button is selected, a

Connector Details Panel is popped up and displays information about the

i

m

m
g

m

==
g

i

I

m

m

m

w

!

i

m
W

D

!

m

m

PAGE 16
m

g

- _ ASDWPHASEIV SUMMARYREPORT

v

L.

m

m

w

_w

w

connector group corresponding to the currently selected item on the Graph

Ports textlist. The Connector Details Panels are discussed in Section 3.7,

3.8, and 3.9.

Component Details... When the Component Details... Button is selected, a

Component Details Panel for the graph to which the graph ports belong is

displayed. The Component Details Panel is discussed in Section 3.4.

Close. When the Close Button is selected, the Graph Port Details Panel is

dismissed.

3.6 The Connector Details Panels

The Connector Details Panels are used to create, modify, or examine the connector

groups on a graph. All connectors in a connector group have the same Source and

Destination, and all connectors that have the same Source and Destination are in the

same group. The Source of a connector can either be a Node, a Constant value, or a

Graph Input Port. The Destination of a connector can either be a Node or a Graph

Output Port. Depending on the Source and Destination of the connector group, one of

the following four Connector Details Panels will be popped up:

• Node to Node Connector Details

• Constant to Node Connector Details

• Graph Input Port to Node Connector Details

• Node to Graph Output Port Connector Details

Since the Node to Node Connector Details is the most general of the Connector Details

Panels, it will be discussed first. Then the others will be discussed in turn. The Node

to Node Connector Details Panel and the Node to Graph Output Ports Connector Panel

are shown in Figures 3-6 and 3-7 respectively.

3.7 Node to Node Connector Details Panel

The Node to Node Connector Details Panel is used when both the Source and

Destination of the connector group are nodes. The Node to Node Connector Details

Panel is shown in Figure 3-6. The contents of fields on the panel and responses to

events are described below:

• On Graph. The On Graph Field contains the name of the graph that the

connector belongs to. The text in this field is read only.

PAGE 17

ASDW PHASE IV SUMMARY REPORT w

m Of Dill Eq : Positi
DONE : (triggor)

to

! I ! I

Figure 3-6: Node to Node Connector Details Panel

• Connectors. The Connectors Field is a textlist field which lists all the

connections between the Source and Destination. The title of the textl]st

identifies the Source and Destination of the connector group. The contents

of the textlist are items with fields for the source port name and data type,

and the destination port name and data type. The source and destination

ports always have the same data type. If there are no connectors between

the Source and Destination, then the textlist contains the single item

"<none> ", which, if selected, becomes unselected immediately.

Selecting an item on the Connectors textlist causes the selection of the items

in the Sources textlist and Destinations textl]st that correspond to the source

and destination of the selected connector item. The Connector Notes text

field will be populated with user-entered notes about this connector.

The current selection on the Connectors textlist is read when the Disconnect

Button is selected. The Disconnect Button is described below.

PAGE 18

J

MP

m

W

.=_

m

m

m
'ID

w

L_
m

ASDW PHASE IV SUMMARY REPORT

Source Ports and Destination Ports. The Source Ports Field is a textlist

field listing the output ports of the Source node. Its title identifies the

Source node. Similarly, the Destination Ports Field lists the input ports of

the Destination node and its title identifies the Destination node. Both fields

are populated with items that include the port name and data type.

When an item on the Source Ports textlist or Destinations Ports textlist is

selected, one of two things will happen. If the item selected corresponds to a

port that is already the source or destination of a connector between the two

nodes, then the corresponding connector item in the Connectors textlist is

selected, as is the corresponding source or destination port item on the other

textlist. The Connector Notes text field is populated with any user-entered

notes about the connector.

If the item selected does not correspond to a port that is a source or

destination of a connector between the two nodes, then any selected item in

the Connections textlist is unselected and any corresponding text in the

Connector Notes Field is also cleared. If there is an item selected in the

other (Source Ports or Destination Ports) textlist and it is not of the same

data type as the item just selected, then it is unselected as well.

All nodes have an output port with trigger data type named "<done>". It

is triggered after the node has executed. Likewise, all nodes have an input

port with trigger data type named "<ready>". When HOL code is

generated from a graph, it will be generated in such a way that the code

corresponding to a node with a trigger connection to second node is executed

prior to the code corresponding to the second node. This is described in

more detail in Chapter 2.

The current selections on the Source Ports textlist and Destination Ports

textlist are read when the Connect button is selected.

Node Details... Below the Source Ports textlist is a button labeled Node

Details... When it is selected, a Node Details Panel with information about

the Source node will be popped up. A similar button appears below

Destination Ports textllst. The Node Details Panel is discussed in Section

3:3.

Connector Notes. The Connector Notes Field is a text field containing

one line of user-editable notes about a specific connection. When an item is

selected on the Connections textlist, the Connector Notes Field is populated

with the notes for that connector. If an item is selected in the Connectors

textlist, the Connector Notes Field is read when the user terminates input to
that field.

PAGE 19

ASDW PHASE IV SUMMARY REPORT j

If no item is selected in the Connectors textlist, then the Connection Notes

field can be used to enter notes about a new connector. When this is the

case, the Connector Notes field is read when the Connect button is selected.

Connect. The Connect Button is used to define a connection between a

port on the Source node and a port on the Destination node. When selected,

a new connection is defined between the port corresponding to the currently

selected item on the Source Ports textlist and the port corresponding to the

currently selected item on the Destination Ports textllst. An item for the

new connector object is added to the Connectors textlist and is selected.

The Connector Notes field is read and its contents are now associated with

the new connection definition. The definition is not transformed into an

actual connector object until the Apply or Ok Button is selected. A

definition which has not been applied is discarded if the panel is dismissed

with the Close Button.

m

m

m

m

m

z

g

D

i
m

Disconnect Button. The Disconnect Button is used to specify deletion of

an existing connector object. When selected, the currently selected item on

the Connections textlist is deleted and the Connectors textlist is left with no

item selected. Any selected items on the Source Ports textlist or on the

Destination Ports textlist are unselected. The Connector Notes field is

cleared. The corresponding connector object is not permanently deleted

until the Apply or Ok Button is selected.

If there are no more connectors between the Source and Destination, then

the Connectors textlist is populated with the single item, "<none_ ".

Apply. When the Apply Button is selected, any. connection definitions or

deletions entered through the Connector Details Panel are transformed into

actual connector objects or deletions of connector objects. If any constraint

violations have occurred, a warning panel is displayed.

• Close. When selected, the Close button dismisses the panel without

propagating any changes entered since the last apply.

• Ok. Selecting the Ok button is equivalent to selecting Apply followed by

Close.

i

m

w

q

J

m

D

!

m

3.8 Constants to Node Connector Details Panel

The Constants to Node Connector Details Panel is used when the source ports for a

connector group are all constants. The fields on this panel are the same as those on the

Node to Node Connector Details Panel, with one exception. Instead of a Sources

text list, a text field is provided to allow the user to enter a constant value. Below this

w

m
i

m

PAGE 20
i

ASDW PHASE IV SUMMARY REPORT

Constant Value Field is a button which when selected will cause a panel to pop up to

help the user choose a constant value.

h

==.a

The differences in behavior between the Constant to Node Connector Details Panel

panel and the Node to Node Connector Details Panel are listed below:

Connectors. Items in the Connectors field do not contain explicit

information about the data type of the connector's source. This allows more

room for the constant value. When an item is selected, the Constant Value

Field is populated with the value of the Source Port of the corresponding

connector.

• Constant Value. The Constant Value Field is a text field which is used to

enter a constant value to be used as the source of a connector. If the value

of this field is changed while an item on the Connectors textlist is selected,

its value iS tested for validity: Thismeans that it is tested to see if it is a
Valld identifier for the datatype of the |nput port to which it is intended to

be connected.

A description of how identifiers are tested for validity is contained in Section

5.3.

L

Select... The Select... Button is used to help a user select a constant value

to be applied to a given port. To be used, an item must be selected on the

Destination Ports textlist, and a set of constant values for that data type

must be defined. If this is the case, then the Select Constant Value Panel is

popped up.

The Select Constant Value Panel has a static text field that indicates the

data type of the destination, a textlist that contains the defined constant

values for that type, an Ok button, and a Cancel button. When an item is

selected on the textlist and the Ok button is selected, the panel is dismissed

and the Constant Value Field is populated with the selected value. The

Cancel button dismisses the Select Constant Value Panel and leaves the

Constant Value Field unchanged.

L
w

Connect. Before defining a connection, the constant source value is

checked to see if it is a valid identifier for the data type of the destination

port. If it is not, a warning panel is displayed and the connection is not

defined.

• Disconnect. In addition to the actions described in Section 3.7, selecting

Disconnect also clears the Constant Value Field.

PAGE 21

ASDW PHASE IV SUMMARY REPORT

3.9 Graph Input Ports to Node Connector Details Panel

The Graph Input Ports to Node Connector Details Panel is used to connect graph input

ports to a node's input ports. Instead of a Source Ports textlist, it has a text field for

entering a name for a graph input :port. This text field behaves like the Constant Value

Field on the Constants to Node Connector Details Panel. The panel has a Graph Port

Details... button instead of a Node Details... button. When the Graph Port Details...

button is selected, a Graph Port Details Panel is popped up for the graph's input ports.

The Graph Port Details Panel is discussed in Section 3.5.

The Node to Graph Output Ports Connector Details Panel is used to connect a node's

ports to graph output ports. It behaves analogously to the Graph Input Ports to Node

Connector Details Panel. The Node to Graph Output Port Connector Details Panel is

shown in Figure 3-7.
: v

l

I

m

I

m

I

g

D

Co,mector Delml$ _ tlode fo G_lh Port

nn graph: lix_&f driwer

Caemectoru fran ITnUtTE to GrqJh ports:

to Graph port naN: IS_i_ I

Node Detailm... ! I grq_ Port Details...]

Connector notes: I

Figure 3-7:

[

Node to Graph Output Ports Connector Details Panel

I

g

mP

e

PAGE _°2
!m i
m
I ;

v
ASDW PHASE IV SUMMARY REPORT

When defining a connection to a graph port that is already connected to another port,

the data types must be compatible. If this is not the case, a warning panel is popped

up and the connection definition is not made.

W

E :

m

PAGE 23

ASDWPHASE IV SUMMARY REPORT

4. ESL System Architecture

The ESL software uses several different software libraries to support graphical editing of i#

programs. The objects manipulated by the system are represented internally by ART-

IM [Inference 91] schemas, the ESL Editor Panel is implemented using InterViews --

[InterViews 91], and the remaining ESL panels are implemented using TAE+ [TAE

Plus 91]. The chapter briefly describes how each of these components fits into the ESL

system architecture.

4.1 Use of ART-IM objects

ART-IM schemas are used to represent the objects manipulated by the ESL editor.

Chapter 5 describes the structure for the schemas that the knowledge engineer must

supply to the Access user. These KE-supplied objects describe the structure of the

reusable components in a software library. In addition to these schemas representing

the components used in graphs, the ESL system creates a schema corresponding to each

user-created graph and node, as well as one for each of the connections made in a

graph. In addition, as in earlier releases of ACCESS, the system maintains a schema for

each distinct type of TAE+ pane] which reflects the state of that panel.
m

4.2 Use of InterViews and TAE+

The ESL Editor Panel is implemented using functions in the InterViews and Unidraw

libraries. InterViews and Unidraw are too]kits used to create graphical object editors.

The software for the ESL Editor Panel is based on example programs supplied with
Unidraw.

Creating an application that supports both the InterViews ESL Editor Panel and the

various TAE+ panels required modifications be made to source code in both the

InterViews and TAE+ software libraries. The InterViews software was modified so that

the variable for the X windows display is shared between InterViews and TAE+ and so

that initialization of that variable is done from TAE+.

The TAE+ functions also were modified so that they do not declare variables for the

standard C++ streams, but rather share the ones declared and used by the InterViews

software.

Finally, the TAE+ event handling loop was modified so that it detects when an event

occurs in the InterViews panel. When this is the case, the event is placed back on the

event queue and the InterViews function that handles the event is called. If not. the

event is a TAE+ event and is handled as before.

m

f

W

M

D

PAGE 24

= .-

ASDW PHASE IV SUMMARY REPORT

=

h

t

= :

w

5. KE Provided Objects

In order to create applications with the ESL Editor, the knowledge engineer must

provide the user with a library of Ada subprograms and make these available to the

ACCESS user by defining the corresponding ACCESS objects (ART-IM schemas).

This chapter describes the structure of these schemas.

contains a complete listing of the ESL schema definitions.

The file "esl-objects.art"

5.1 PRIMITIVE-SUBPROGRAIVI Objects

The knowledge engineer must define an instance of a PRIMITIVE-b-R$BPROGRAM schema

for each Ada procedure or function that the user is to be able to incorporate into ESL

Graphs. The structureof a PRIMITIVE-SUBPROGRAM schema is:

(defschema primitive-subprogram

(label)

(notes)

(has-lmplementatlon)

(has-lnput-ports)

(has -output-ports)

(subprogram-type)

)

LABEL. The value in the LABEL slot is the name of the Ada subprogram.

• NOTES. The value in the NOTES slot is a documentation string which is

displayed in the Notes Field in the Component Notes Panel.

• HAS-IMPLEMENTATION. The value in the HAS-IMPLEMENTATION slot is the

name of the IMPLEMENTATION schema for the node. The structure of

IMPLEMENTATION schema is discussed in Section 5.4.

HAS-INPUT-PORTS and HAS-0UTPUT-PORTS. The values in the

HAS-INPUT-PORTS and HAS-0UTPUT-PORTS slotsare the names of the PORT

schemas for the subprogram. Both slotsmay have multiple values.

There must be a PORT schema for each IN parameter, for each OUT

parameter, and for the return value of a function. There should be two

PORT schemas for IN OUT parameters. The structure of the PORT schema is

discussed in Section 5.2.

SUBPROGRAM-TYPE. The value in the SUBPROGRAM-TYPE slot is

PROCEDURE or FUNCTION, depending on the type of Ada subprogram.

either

PAGE 25

ASDWPHASEPCSUMMARYREPORT w

5.2 PRIMITIVE-SUBPROGRAM-PORT Objects g

The knowledge engineer must define an instance of a PRIMITIVE-SUBPROGRAM-PORT

schema for each IN or OUT parameter or function return value for every Ada D

subprogram for which there is a corresponding PRIMITIVE-SUBPROGRAM object. The

values in the HAS-INPUT-PORTS and HAS-0UTPUT-PORTS slots for this -

PRIMITIVE-_rBPROGRAM object are the names of these schemas. The structure of a m

PRIMITIVE-SUBPROGRAM-PORT schema is:

(defschema port i
(label)

(notes)

(direction)

(port-data-type)

(pogltlon)

(parameter-type)

(belongs-to-subprogram)

)

LABEL. The value in the LABEL slot is the name for the port. The values in

the LABEL slot of the two ports that correspond to an IN OUT parameter

must have the same name.

g

i

g

NOTES. The value in the NOTES slot is the documentation string for the port.

This information appears after the port name in the Input Ports Field or

Output Ports Field on the Component Details Panel. The Component

Details Panel is discussed in Section 3.4.

• DIRECTION. The value in the DIRECTION slot is either INPUT or OUTPUT,

depending on the port type.

• PORT-DATA-TYPE. The value in the PORT-DATA-TYPE slot is the name of the

DATA-TYPE schema for the port. The structure of the DATA-TYPE schema is

discussed in Section 5.3.

• POSITION. The value in the POSITION slot is the position of the parameter

in the function calling sequence. The port for a function return value must

always be first (POSITION 1).

PARAMETER-TYPE. The value in the PARAMETER-TYPE slot is either IN, OUT,

IN-0UT, or RETURN-VALUE, depending on the type of argument the port is

used to represent,

BELONGS-T0-SL_PROGRAN. The value in the BELONGS-TO-SUBPROGRAM slot

is the name of the PRIMITIVE-SUBPROGRAM schema that the

PRIMITIVE-SUBPROGRAM-PORT object corresponds to.

PAGE 26

.__ ASDW PHASE IV SUMMARY REPORT

z
w

w

h
L

w

5.3 DATA-TYPE Objects

The knowledge engineer must define an instance of the DATA-TYPE schema for each

type of data that is to be used by PRIMITIVE-&aJBPROGRAM-PORT schemas and is named

as a value in the PORT-DATA-TYPE slot of a PRIMITIVE-62YBPROGRAM-PORT schema.

The PRIMITIVE-_t/BPROGRA.M-PORT is described in Section 5.2.

The structure of the DATA-TYPE schema is:

(defschema data-type

(name-of-data-type)

(defined-values)

(test-function)

)

NAME-0F-DATA-TYPE. The value in the NAME-0F-DATA-TYPE slot is the

name of the Ada data type. If the data type is defined in an Ada package,

the "<package-name>.<data-type>" format should be used.

DEFINED-VALUES. The values in the DEFINED-VALUES slot are names of

defined constants for the data type. It is these values that the user chooses

between when the user hits the Select Constant Value Button on the

Constant to Node Connector Details Panel.

TEST-FUNCTION. The value in the TEST-FUNCTION slot is the name of a

function whose single argument is a string representing a user-entered

constant. The function must return T or NIL depending on whether the

value of the string is or is not valid for the corresponding data type.

5.4 IMPLEMENTATION Objects

The knowledge must define an IMPLEMENTATION schema for each subprogram object.

This schema is the value of the HAS-IMPLEMENTATION slot of the corresponding

SUBPROGRAM schema. If the Ada subprogram described by the SUBPROGRAM object is

implemented as a separately compiled procedure, then the IMPLEMENTATION schema

must be an instance of a SEPARATELY-COMPILED-PROCEDURE schema. If the

subprogram is implemented as a visible procedures in a Ada package, then the

IMPLEMENTATION schema must be an instance of a PACKAGE-IMPLEMENTATION schema.

This IMPLEMENTATION schema may be referenced by all SUBPROGRAM objects

corresponding to subprograms in the same package.

The structure of the variouslMPLEMENTATION schemas are as follows:

(defschema implementation)

PAGE 27

ASDW PHASE IV SUMMARY REPORT

(defschema separately-compiled-procedure

Cls-a lmplementatlon)

(addltlonal-wlthed-ob]ects)

(source-file-n_me)

(obJect-flle-name)

(llbrary-file-name)

(defschema package-lmplementatlon

(Is-a implementation)

(name-of-package)

(addltlonal-withed-obJects)

(has-procedures)

(package-spec-file-naa_e)

(package-body-flle-ngale)

(package-spec-obJect-flle-name)

(package-body-obJecC-file-n_me)

NAME-0F-PACKAGE. The value]n the NAME-OF-PACKAGE slot is a string

specifying the name of the corresponding the Ada package. When code is

generated for a graph which contains a reference to a

PACKAGE-IMPLEMENTATION object, An Ada "with" statement is generated

for this package unless the string contains a ".". This string is also used in

procedure calls to the subprogram objects implemented in this pa_:kage.

This slot only exists on PACKAGE-IMPLEMENTATION schemas.

ADDI TI 0NAL-WI THED-0B JECTS. The value in the

ADDITIONAL-WITHED-0BJECTS is either a single string or a sequence of

strings that list Ada packages or subprograms for which a "with" statement

must be generated in order to be able to call the subprogram. Examples of

such an object would be a package containing common data type definitions.

If the value in the slot is a sequence of strings, then the order of these

strings in the sequence determines the order that the Ada "with" statements

are generated. Both types of IMPLEMENTATION schema have this slot.

SOURCE-FILE-NAME. This slot is currently not used in ME-provided

IMPLEMENTATION schema. In system-generated IMPLEMENTATION schemas

for user-constructed GRAPH objects a string specifying the filename for the

generated code is contained in this slot.

HAS PROCEDURES. This slot is not currently used.

e OBJECT-FILE-NAME, LIBRARY-FILE-NAME, PACKAGE-SPEC-FILE-NAME,

mm

PAGE 28

e_ ASDWPHASEIV S_Y REPORT

PACKAGE-BODY-FILE-NAME, PACKAGE- SPEC- 0B JECT-F ILE-NAME,

PACKAGE-BODY-0BJECT-FILE-NAME. These slotsare not currently used.

and

m

L_

PAGE 29

ASDWPHASEIV SUMMARYREPORT

6. Future Directions

There are two distinct directions in which additional work on the ESL system might be

directed. There are also a number of possible enhancements to the system - both to

expand the scope of the software generated by the system and to make the system

easier to use. In addition, more work needs to be done in the design and engineering of

reusable software libraries suitable for use with the ESL system.

6.1 Enhancements to the ESL System

There are several enhancements that could be made to the ESL system that would both

improve the quality of the software generated by the system and also make the system

more powerful and easier to use.

A limitation of the current ESL system is that it does not yet support asynchronous

nodes, as was suggested in the ESL language specification. In the current

implementation of the ESL language, nodes on the directed graph represent Ada

procedures. The graph is used to generate an Ada main program, which can then be

compiled and executed. The graph corresponds to a standard procedural programming

paradigm with a predetermined flow of control.

An extension to this system would be for nodes to represent asynchronous processes

executing in parallel. In that case, the graphical connections between these nodes would

not represent a single data item, but rather a queue of data items. During execution of

a node, data items would be consumed from the queue connected to each of the node's

input ports and data items would be generated and put into the queue connected to a

node output port. In this paradigm, a node is executed when there is sufficient data in

each of the queues connected to the node's input ports. Such asynchronous nodes would

probably be implemented as separate Ada tasks. Introduction of these asynchronous

nodes will require a review of graph semantics, and will introduce changes to the graph

validation and code generation processes.

The existing ESL system is limited in its support of Ada generics. Ada generics are

supported if the knowledge engineer anticipates the exact generic instantiation and

makes the instantiated subprogram objects available to the Access user. To better

support generics, the system could be enhanced to support GENERIC-SUBPROGRAM

objects which will create SUBPROGRAM objects when the user supplies the instantiation

values.

In addition these conceptual enhancements to the existing ESL system, there are other

enhancements that might be made to make the tool easier to use. The ESL Editor

Panel and the ESL Editor Control Panel together constitute one logical group of

functionality; the ESL Editor Control Panel displays information about the graph

PAGE 30

D

B

W

l

m

i

!
Q

g

g

ASDW PHASE IV SUMMARY REPORT

..-..

edited on the ESL Editor Panel. The tool would be .e_ier to use if these two panels

were merged into one.

The system displays the name for a node below the image for the node on the ESL

Editor Panel, but does not allow the user to change the name on this panel. To change

the name for a node, the Node Details Panel must be displayed and the name be

changed in the Name Field. Instead of using this mechanism to change node names, the

tool would be easier to use if the node names could be changed directly on the ESL

Editor Panel.

6.2 Developing Reusable Software Libraries

Another direction for future work on this system is in the design and development of

reusable software libraries. As has been mentioned earlier, the usefulness of this tool is

heavily dependent on the existence of a good function library. Work needs to be done

both in describing how such libraries should be designed, and also in developing good

libraries for various domains.

L

L-

PAGE 31

ASDW PHASE IV SUMMARY REPORT m

7. Conclusions

Extension of the ACCESS software to include the ESL editor has demonstrated the

viability of a tool that can be used by non-programmers to create programs by direct

manipulation of graphical components. The directed graph paradigm used to define

programs is not specific to a particular problem domain and the system can be used by m

non-programming users in a great variety of fields. Presently, plans are for the system

to be used to develop mission planning simulation software.
I

Although the tool can be used to express programs in any problem domain, the use of

directed graphs to create programs is more appropriate for some types of problem
I

domains than others. Nodes in these directed graphs can take input and produce

output, and all data must be processed by being passed from node to node. The user

has no means of explicitly defining and using local variables in a graph. These

semantics make the tool better suited for problem domains in which data is passed

through a succession of "processors" than one in which applications require a significant

control structure. The ESL Editor supports IF nodes and ITERATOR nodes to allow

branching and iteration, but these constructs tend to require the end user to have a fair

amount of programming knowledge.
i

For the tool to be of most benefit, the application libraries made accessible by the

system should be designed to be used with such a system. In particular, the inputs and m
outputs for the various software components should be of consistent data types. If they

are not, the knowledge engineer will need to supply the user with an additional library

of components that convert one data type to another or components that access objects

contained in or pointed to by an object. Graphs constructed with such components will

naturally be less readable because of the additional clutter introduced by the new

components. The best type of library for use with this system is one that in which the

components are designed to fit together, with the outputs produced by one group of

component being directly mappable to the inputs accepted by other components. The

set of functions provided by the library must also constitute a complete set of tools that J

can be used to address a wide variety of problems in an application domain.

J

g

PAGE 32

ASDW PHASE IV SUMMARY REPORT

r._.-

= ,

W

w

=

w

L

Appendix A Graph Validation Algorithm

This appendix describes in some detail the algorithm which is used to check the validity

of an ESL graph.

Some requirements for validity are enforced

connectors connect ports of the same data type.

to be checked at graph validation time.

as the graph is created e.g., that

However, most requirements will have

The fundamental requirement which must be checked for graph validity is that data is

produced at all graph output ports regardless of the path through the graph that is

actually executed; in particular, regardless of the input data. In checking graph

validity, it will be assumed that any given path through the graph has the potential to

be executed - that is that any IF node can generate a THEN or an ELSE output.

As an example of the implications of this consider the following:

Suppose an IF node checks if a value is less than 0 and that when it is, the IF node

triggers a IF node, which also accepts the same value through its input port as the IF

node did. Then the graph validator will assume that both branches through the IF

node are possible, even if one of them corresponds to a situation in which the input

data is greater than 0. Thus, potentially, there are situations where the user knows

that a particular path cannot occur, but the validator cannot identify that path.

During validation, one requirement which can be checked locally is that for each non-

trigger input port on a node, there exists a connector with this port as destination. A

second condition is that all control nodes (IF or LOOP) have connectors connected to

each of their output ports.

Now, the steps in validating an ESL graph are as follows:

1. Check local conditions, i.e., that there is a connector to every node input

port and a connector from every control node output port.

2. Identify nodes within the scope of each loop. The initial implementation will

not support nested loops.

3. Label graph nodes in the order in which code will be generated and label

nodes and connectors with the execution path (branches on control nodes)

which is used to reach them. The algorithm for doing this is now described

in some detail below

The motivation for this algorithm to label nodes in the order in which the), will be

PAGE 33

ASDW PHASE IV SUMMARY REPORT m

executed (also the order in which code will be generated) and to label each connector in

such a way that one can identify the execution path which would have to be taken

through the graph in order to produce data on that connector.

The node labels should be constructed in such a way that all nodes within the scope of

a THEN branch of an IF construct are labeled sequentially, followed by all nodes within

the scope of the ELSE branch.

The execution path labels consist of sequences which define the paths taken through the

various control nodes. For example, if an execution path passes through IF node 12,

producing a trigger output through the THEN branch, and then passes through IF node

17 producing a trigger output on the ELSE branch, then this path will be labeled ((12,1)

(17,2)).

Once labels have been supplied for all connectors which connect the input ports of a

given node, the algorithm then involves making sure that these labels are consistent.

The first step consists in verifying consistency of labels on connectors to individual

input ports of the node - both the data ports and the trigger input port. There is some

difference in the way consistency is handle for these different input port types.

Ports on a particular node may be non-merge or merge ports. The first corresponds to

the case in which there is a single connector with this port as destination; the second

corresponds to the case in which there are multiple such connections.

If a node port is merge port for the node, then the algorithm consists of determining

whether the labels for the connectors into that port can be merged consistently into a

single label. There are two different types of merges which can occur at a merge port.

The first type represents a true merge of data computed on disjoint execution paths

from a control node. In this case, two execution paths labeled by sequences of the form

((N, 1)) and ((N, 2)) get merged to (). The meaning is that data is generated at this

port for any execution path which goes through the THEN (1) or ELSE (2) branch of

node N, so that data is generated at this port no matter which branch is taken through

the IF node.

Another type of merge at a node data port is what is called an overwrite merge.

Suppose, for example, if one connector to the port is labeled with the empty sequence

and another is labeled with the sequence ((N, i). This could represent the case in which

a constant value is supplied as a default input to that port and a different value is

followed if the execution path that goes on branch i from node N is followed. Thus data

is available at the port no matter which execution path is followed. Thus the label

which would be attached to the merged data is the empty sequence. In general, if there

are two execution path labels, one a subsequence of the other, an overwrite merge

merges them to the shorter sequence.

PAGE 34

m

J

g

g

_--n

W

t

U

g

B

g

I

W

J

W
w

W

ASDW PHASE PC S_Y REPORT

r

W

_=

W

1--

T

=
W

For merges at node data ports, the algorithm will perform true execution path merges

first and then perform overwrite merges. If an execution path merge occurs at a node,

this must be recorded, as it affects the determination of consistency among the input

ports in a way which will be described below.

NOTE: A consequence of the above definitions is that data generated by nodes within

the different branches of IF construct which is in itself within the scope of another

control construct be merged if necessary prior to being merged with data from a

different branch of the parent control construct. For example, the sequences ((N, i))

and ((M, j)) will not be merged. In short, the design decision has been made not to

carry along a label which represents the union of these two execution paths. This

limitation corresponds to good programming practice.

Each node has a trigger input port. The purpose of this input port is to allow

sequencing of node execution. Since the algorithm being described ensures that a node

will not be labeled until the connectors to its trigger input port have been labeled, there

will be no consistency check for labels on connectors to this node.

If all connectors into a node are labeled by execution path and merging of these labels

at merge ports has occurred successfully, then one must validate consistency between

the labels which have been computed for the input ports. The following conditions

must be satisfied:

. All new labels which have been computed for data input ports for this node

must be an initial segment of the longest sequence labeling any of the

connectors. For example, the labels ((12, 1) (17, 2) (20 1)), ((12,1)), and ((12,

1) (17, 2})) for three connectors connecting to the three input ports of a
node are consistent - data will be available at this node when the execution

path corresponding to ((12, 1)(17, 2)(20 1))is followe'd. However, the labels

((12, 1)), ((12, 1)(17, 2)), and ((12, 2)(17, 2)(20 1)) are not consistent,

because the third label shows data reaching this port via a different branch

out of control node 12 than do the first two labels.

. However, if one or more execution path merge has occurred at any of the

input ports, the labels corresponding to these merges must all represent the

same and most specific execution path labels attached to any of the node

input ports.

For example, this means that if data at one node is available only along the

execution path ((N, 1), then there should not be a merge at another node of

data from ((N, 1)) and ((N,2)). However, data computed before the IF node

branch (i.e., supplied along a connector with () as label), can be merged with

data with the label ((N, 1).

PAGE 35

ASDW PHASE IV SUMMARY REPORT

The following is an example of graph which would not be allowed under this

interpretation:

If the labels computed for the various inputports of a node are consistent as described J

above, the labels merge to the label representing the most specific execution path - e.g.,

to the label represented to the longest sequence.
J

The following in more detail is the algorithm for labeling nodes and connectors:

II

Make the pseudo node corresponding to the graph input ports eligible to be labeled. Set

the execution path label for this node to the empty sequence. Set the next node label to

1.

Do until done: :

. Take highest priority node eligible to be labeled and label with the next

node label, M, then increment the value of the next available node label.

Label the connectors from this node as follows:

o If this is an IF node, the output ports from this node are numbered (1

for THEN, 2 for ELSE. The label on the connectors consists of the

connector label for the nodewith (N, i) appended to the end of the

sequence, where i is the number of the output port to which the

connector connects. For example, if an IF node were labeled ((K, 1)),

the connector connecting to its THEN output port would be labeled

((K,1), (M, 1)) and the connector connecting to its ELSE output port

would be labeled ((K, 1)(M, 2)).

2. If this is not a control node, then label the connectors with the

execution path label for this node.

• After the connectors from the node have been labeled, redetermine the nodes

eligible to be labeled. Do this by iterating over all nodes to which the newly

labeled node is connected.

o The graph is not valid if any such node is already labeled, unless the

two nodes are within the scope of the same loop.

For each node to which the newly labeled node is connected, determine

whether all connectors connecting to the ports corresponding to this

struct have been labeled. The exception is that if a port on a node

within the scope of a loop is a merge port, only those connectors from

outside the loop must be labeled. Also, only the connector to the

INITIAL port of an ITERATE node must be labeled in order to

process the node. It is invalid for a label to be applied to a connector

W

m

m

g

g

m

J

g

IP

W

g

g

g, i

PAGE 36

W
z

w
ASDW PHASE IV SUMMARY REPORT

o

o

to a LOOP port prior to labeling the ITERATE node. If all required

connectors to the node have been labeled, then determine consistency

of the labels as described above. If consistency does not hold at any

input port or for the node as a whole, then the graph is invalid. If

consistency holds, compute the execution path label for the node.

If a merge occurs at a node port within the scope of a loop, the label

created must be a subsequence of the label on the INITIAL input port

of the ITERATOR node at the top of the loop. This ensures that data

supplied within the scope of the loop does not come from an execution

path more specific than the one which triggered the start of the loop.

If the newly computed label is for an input port for a node outside the

scope of a loop, it must not depend on any node within the scope of

the loop.

If a node has been assigned an execution path label, then it is eligible

to receive a node label. The exception is that the ITERATOR node

for a loop is not eligible to receive a node label until all input ports

within the loop which receive input from outside the loop have

received labels.

D

L

z

mL _
w

T

J

m

m

w

. Now, label the highest priority node eligible to be labeled. Priority is

determined on the basis of the execution path label for the node and the

type of the node, as follows:

o Once the ITERATOR node for a loop has received a label, any node

within the same loop has priority over a node outside the loop.

A node corresponding to a label containing the pair (N, 1) is assigned a

node label before one containing the pair (N, 2) (i.e., nodes along the

THEN branch of an IF node are assigned values before ones along the

ELSE branch).

Once a node whose execution path label contains the pair ((N, i)) has

been labeled, any node whose execution path label contains this pair

has priority over a node whose execution path does not contain this

pair.

o If two nodes correspond to the same label, a procedure or subgraph

node takes precedence over a control node.

o Finally, precedence is determined by the physical representation of the

graph with leftmost and topmost nodes having priority.

PAGE 37

ASDW PHASE IV SUMMARY REPORT

End Do

The process is complete when there are no nodes left to be labeled.

The following conditions must be satisfied in order for the graph to be valid:

1. All nodes must have been labeled.

2. The connectors to the graph output ports must be labeled with the empty

sequence. This means output will be produced at all graph output ports

regardless of the execution path which is followed.

3. The node labels on the nodes with an execution path label containing the

pair (M, i) must represent a contiguous set of integers.

PAGE 38

w

D

I

M

U

J

S

m

W

w

I

W

g

l
J

=
=_

J

B

- " ASDW PHASE IV SUMMARY REPORT

= :

[Inference 91]

[InterViews 91]

[Softech 90]

[TAE Plus 91]

References

Inference Corporation.

A.RT-IM 2.5 Reference Manual.

Inference Corporation, 1991.

Mark Linton.

InterViews Reference Manual, Version 8.1.

Stanford University, 1991.

Softech, Inc.

Summary Report for the Engineering Scripting Language (ESL).

Technical Report Subcontract SE.33, NCC-9-16, Report to NASA and

University of Houston-Clear Lake, 1990.

NASA.

TAE Plus User Interface Developer's Guide, Version 5.1.

NASA, 1991.

w

W

w

PAGE 39

J

m_

Q

J

m

_m

g

g

W

J

w
El

J

mm
[]
IB

mm

W

i
!
i

ww

!

J
D

m_

D

_B

W
m

B

lid

ill
!

w i

! !
Iw i

|
!

=-- |

m!

|i

